Sunday, February 7, 2016

3.4 Solving Exponential and Logarithmic Equations

      Exponential and logarithmic equations can be solved using two strategies based off of the One-to-One Properties and Inverse Properties. 


For  and , these properties are true for all  and  for which  and  are defined. 

One-to-One Properties:

1). if and only if  

ex:      
          
          

2).  if and only if 

ex:   

          
          
          

Inverse Properties:

1). 

ex: 

         
        
        
        

2). 

ex: 


The examples above are the very basic to clearly show how the one-to-one and inverse properties can be used to solve logarithmic and exponential equations. The strategies to solve logarithmic and exponential equations can be summarized through the following:

  1. Rewrite the given equation in a form to use the One-to-One properties of exponential or logarithmic functions.
  2. Rewrite an exponential equation in logarithmic form and apply the inverse property of logarithmic functions.
  3. Rewrite a logarithmic equation in exponential form and apply the Inverse property of exponential functions.
Change-of-Base formula

The Change-of-Base formula shows that:

This is proved through the following: 

            let  
           
                     
            
                  
           
             

           


Solving Exponential Equations

Algebraic Solution:

    Solve: 

                                   divide both sides by 8 and simplify the fraction
                            Take logarithm of each side

                                 Use the inverse property

       
                                 solve for x by multiplying each side by 1/3 

Graphical Solution: 

 Enter  and  into your calculator


use the intersect or zoom and trace features to approximate the intersection point. This graph shows that the two equations intersect at  (0.074,10) or   

Graphical Solution 2: 

rewrite the original equation as  


Use the zero root feature or the zoom and trace features to approximate the x-intercept(s). the zero on this graph is shown at (0.074,0) or   

Solving an Exponential Equation in Quadratic Form:

Algebraic solution:

           Solve: 

                                          Rewrite in quadratic form

                                        Factor

                       Set both factors equal to zero

                                            isolate 

                                      
*Check both of these solutions in the original equation to see if either is extraneous*

To find the solutions to this equation graphically, use the second graphical solution method shown above. 

Solving Logarithmic Equation

Algebraic Solution: 

 Solve:  

                         subtract 6 from each side
   
                         divide each side by 2

                         exponentiate each side

                                 Inverse property to solve

             

Graphical Solution:

Enter  and  into your graphing utility 


use the intersect or zoom and trace features to approximate the intersection point. This graph shows that the two equations intersect at (0.707, 5). 0.707=

Checking for Extraneous Solutions:

Algebraic Equation: 

solve: 
  
                    Use the properties of logarithms

                                     One-to-One Property

                                        Write in general form   

                                   Factor

               

By checking both of the solutions with the original equation, we can conclude that x=1 is an extraneous answer. This is because the solution x=1 creates the equation   , and -1 is outside of the domain of a natural log function.

Graphical Solution: 

Rewrite the original equation as 

          


Use the zero root feature or the zoom and trace features to approximate the x-intercept(s). the zero on this graph is shown at (6,0).

Approximating Solutions

This method should be utilized for equations that contain combinations of algebraic functions, exponential functions, and/or logarithmic functions that will be messy by solving algebraically.

example:

solve: 

                   rewrite

                 graph

















We can approximate the two solutions of this equation to be 0.138 and 1.56. After, Check solutions with original equation.

No comments:

Post a Comment